Feasibility of Detecting Voids with Rayleigh-wave Diffraction
نویسندگان
چکیده
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surfacewave techniques can provide reliable S-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Therefore, we studied the feasibility of directly detecting voids with surface-wave diffractions. Based on the properties of surface waves, we have derived a Rayleigh-wave diffraction traveltime equation. We also have solved the equation for the depth to the top of a void and an average velocity of Rayleigh waves. Using these equations, the depth to the top of a void can be determined based on traveltime data from a diffraction curve. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average Rayleigh-wave velocity that generates the diffraction curve. We used four two-dimensional square voids to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions: a 2 m by 2 m with a depth to the top of void of 2 m, 4 m by 4 m with a depth to the top of the void of 7 m, and 6 m by 6 m with depths to the top of the void 12 m and 17 m. Rayleigh-wave diffractions were recognizable for all these models after FK filtering was applied to the synthetic data. The Rayleigh-wave diffraction traveltime equation was verified by the modeled data. A real-world example is presented to show how to utilize the derived equation of surface-wave diffractions.
منابع مشابه
Rayleigh‐wave diffractions due to a void in the layered half space
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the r...
متن کاملWave Propagation and Fundamental Solution of Initially Stressed Thermoelastic Diffusion with Voids
The present article deals with the study of propagation of plane waves in isotropic generalized thermoelastic diffusion with voids under initial stress. It is found that, for two dimensional model of isotropic generalized thermoelastic diffusion with voids under initial stress, there exists four coupled waves namely, P wave, Mass Diffusion (MD) wave, thermal (T) wave and Volume Fraction (VF) wa...
متن کاملProblem of Rayleigh Wave Propagation in Thermoelastic Diffusion
In this work, the problem of Rayleigh wave propagation is considered in the context of the theory of thermoelastic diffusion. The formulation is applied to a homogeneous isotropic thermoelastic half space with mass diffusion at the stress free, isothermal, isoconcentrated boundary. Using the potential functions and harmonic wave solution, three coupled dilatational waves and a shear wave is obt...
متن کاملInfluence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces
The present investigation deals with the propagation of Rayleigh wave in an incompressible medium bonded between two half-spaces. Variation in elastic parameters of the layer is taken linear form. The solution for layer and half-space are obtained analytically. Frequency equation for Rayleigh waves has been obtained. It is observed that the heterogeneity and width of the incompressible medium h...
متن کاملRayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space
In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function. The general solution of the equation of motion is obtained, which satisfies the required radiation condition. The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...
متن کامل